Date: 18 July 2025
MLKIT BARCODE/QR SCANNER APP
VERSION: 1.0.5

Overview 		
The MLKit Barcode/QR Code Scanner app can scan and decode barcodes. Under the hood, the component contains NFIs that use the Google MLKit Barcode API. The component also supports continuous scanning.
	
Requirements:

· Volt MX Iris

Devices:
· Mobile
· Tablet

Platforms:
· Android
· IOS

Features:
1. The component utilizes Google MLKit Barcode SDK for decoding barcodes and QR codes.
2. It supports the following Barcode types: Android:(https://developers.google.com/ml-kit/vision/barcode-scanning/android) iOS:(https://developers.google.com/ml-kit/reference/ios/mlkitbarcodescanning/api/reference/Enums/MLKBarcodeFormat)

A. App Functionality:
· When you build and run the app using, you can scan and decode barcodes.
· You can zoom in, zoom out the camera by clicking on the respective z+ and z- buttons.

B. Importing the app:
To import the MLkit Barcode/QR scanner app into your workspace, follow these steps:
1. Open Volt MX Iris
2. On the main menu select Forge → Browse.
3. Search for the MLkitBarcode app, and then click Import to Workspace. The app is imported to your workspace. A dialog box appears, confirming that the app has been imported. Click OK.
4. Switch to your project containing the MLkitBarcode app. To switch to your project, click File → Open → Reference Architecture → <project name>
C. Building the app:
After performing all the above steps, you can build your app and run it on your device. For more information, you can refer to the Building and Viewing an Application section of the Volt MX User Guide.
You can then run your app to see the Barcode/QR code Scanner work in real time.

D. Configure the UI and settings of the MLkitBarcode App
The MLkitBarcode app consists of the following component:
· The MLKitBCScanner component is used to scan the barcodes and QR codes.
· Take one form and add the buttons which you need like Restart, z+, z- and flash.

Restart:

[image:]

this.view.btnRestart.onClick=function(){
 this.view.MLKitBCScanner.restartSession();
 }.bind(this);

ZoomIn:

[image:]

this.view.btnZoomIn.onClick=function(){
 this.view.MLKitBCScanner.zoomIn();
 }.bind(this);

ZoomOut:

[image:]
this.view.btnZoomOut.onClick=function(){
 this.view.MLKitBCScanner.zoomOut();
 }.bind(this);

Flash:

[image: A screenshot of a computer

Description automatically generated]

Configuring Native Settings (iOS):
To configure the native settings for iOS, follow these steps:
1. From the Project explorer, go to Assets and expand Media.
2. Right-click Common, and then select Resource Location. Volt MX Iris opens the common resources folder in a file explorer.
[image: Graphical user interface, text

Description automatically generated]
3. Open the infoplist_configuration.json file with a text or code editor.
4. At the end of the file, type the following code. You can change the description based on your preference.
"NSCameraUsageDescription”: "Your Description"
[image: Text

Description automatically generated with medium confidence]
5. Save the file.

Configuring Deployment Target
1. From the left navigation menu, click Project Settings.
2. In the Project Settings window, go to Native → iPhone/iPad.
3. Under Target Versions, from the iOS Version list, select 15.5.0 or higher.
4. Set the application launch mode to Both and select both Portrait and Landscape for supported orientations.
	[image:]
After you configure the native settings, you can Build and Run your app to see the Google MLKit Barcode/QR Code Scanner component work in real time.

Configuring Native Settings (Android)
To configure the native settings for Android, follow these steps:
1. From the left navigation menu, click Project Settings.
2. In the Project Settings window, go to Native → Android Mobile/Tablet.
3. Set the CAMERA permission to true.
To set a permission to true, select the permission from the left panel, and then click Add.
[image: Graphical user interface, application

Description automatically generated]
4. Switch to the Gradle Entries tab.
5. Add below Camera permission flag at Project Settings/Android Mobile/Tablet/Manifest Permissions, Tags and Gradle Build Entries/Tags/Child tag entries under <manifest> tag/
<uses-feature android:name="android.hardware.camera.any" />

6. In the build.gradle entries to Suffix box, type the given code based on the version of the component.
dependencies {
// CameraX
implementation "androidx.camera:camera-camera2:1.4.2"
implementation "androidx.camera:camera-lifecycle:1.4.2"
implementation "androidx.camera:camera-view:1.4.2"

// MLKit
 implementation 'com.google.mlkit:barcode-scanning:17.3.0'
 implementation 'org.jetbrains:annotations:15.0'
}

NOTE:
· If you do not add the gradle entries to your project, the app crashes.
· You can update the Play Services version in the later builds of your app.
After you configure the native settings, you can Build and Run your app to see the Barcode/QR Code Scanner component work in real time.

MLKitBarcode app:

The following is the screen shots of the app:
1. The iPhone will ask for permission like this.

[image: A screenshot of a phone

Description automatically generated]

2. After that we can see this screen
[image: A computer screen with a keyboard

Description automatically generated]

3. Try to scan any QR code, will scan like this
[image:]

4. After click on Restart button the screen will be
[image: A keyboard with white letters and numbers

Description automatically generated]

5. By clicking on z++ button
[image: A keyboard with white letters

Description automatically generated]

6. By clicking on z-- button
[image: A keyboard with white letters and numbers

Description automatically generated]

Limitations:
1. This component supports only 64-bit devices
Known issues:
-N.A.-
image11.png

image5.png
Project Skins Templates | Assets | O

¢
~ (5 wedia

] Common|
[Desktop

0 weore Y

] Tablet
© Wearsbles

> [Fonts

image2.png
[Hinfoplst_corfiguraton;son E3

1
/e

-/

"NSAppTransportSecurity”
i
"NSAllowsArbitraryloads” : true ,
"NSExceptionDomains”
i
mexample. com”
i
"NSIncludesSubdomains” : true ,
"NSExceptionAllowsInsecureHTTPLoads"

true

1,

"NSCameraUsageDescription” : "This is a dummy description”

"NSCameraUsageDescription” : "Your Description”,

image9.png
Project Settings

Application

Foundry
Vv Native
iPhone/iPad
Watch
Android Mobile/Tablet
Android Wear
Windows (UWP)

> Desktop

Adaptive Web (Mobile SPA)
Responsive Web
Protected Mode
Metrics APM

Al Assistant Ruleset

Development Method

development

P12

Deeplink URL Scheme:

URL Scheme

Target Versions:
iOS Version

15.5

Push Notifications:
Push Certificate

None

iPad Settings:
Application Launch Mode
Both

Supported Orientations

Portrait Landscape

Icon Settings:

iPhone = iPad = App Store

Default Theme

Mobile Provision

P12 Password

Cancel

image4.png
Manifest Permissions, Tags and Gradle Build Entries:

Permissions | Tags ~ Gradle Entries

“The following permissions are set
to false:

R
srosocscT sTcky

srocsst s |
oaLLprone

caLsawLEsED
CHANGE.COMPONENT ENABLED5
CHANGE CONFIGURATION

“The following permissions are set
to true:

ACCESS_NETWORK_STATE
CAVERA
INTERNET

READ_PHONE_STATE

image7.png
“MIkitMp" Would Like
to Access the Camera
This is a dummy description

image12.png
AAAAA

gatures

Vw0l G0N -0 0

Z++
¢ « Dl B
q
N)
g i F F9 F10 e s
171
& * () 5
£t ol T OFS
Restart

image8.jpg
@

11:35 -

e Uy

g o

ool

Alory” Apit I

owdgy

1o srvcen

Alert [
{"formatName":"QR_CODE","code":"
{\"previewCode\’ !

\"7KED3\"}","displayValus
viewCode\";

\"7KED3\"}","format":"256"} ‘

4 Documertation

Restart

Features

vk s ooy o unch he ppater

image13.png

image14.png
Flash
[&
\

image10.png
Flash

™
[
e |
v
- -

| @¢ 11

image1.png
o PR

z-

image6.png
o1 e -

image3.png
o1 e -

