Date: 05 Feb 2024
Vue Accordion
version: 1.0.2
Overview
[bookmark: OLE_LINK44][bookmark: OLE_LINK45]The component contains a set of catalog items in a row. Every item contains a background image. When the user hovers on an item, the item expands. In the expanded state, the item contains the background image, a title and text. When the user moves the cursor to anywhere else on the screen, the item collapses. In the collapsed state, the item hides the title and text, but still shows a part of the background image.
A. Use case:
I. [bookmark: OLE_LINK46][bookmark: OLE_LINK47]You can use the component in scenarios such as: a retail app, where you want to display a catalog of product categories that a user can select to view the relevant products.
II. You can customize the image, the title, and the text that you want to display on every item. You can also customize the logic that you want to perform when a user clicks an item.
B. Percentage of re-use:
Approximate 90% of reuse.
C. Features
· [bookmark: OLE_LINK48][bookmark: OLE_LINK49]Display image, the title, and the text are customizable as required
· Business logic can be added easily on click of items
Getting Started
Prerequisites
Before you start using the Vue Accordion component, ensure the following:
• HCL Foundry
• Volt MX Iris
Platforms Supported
i. Responsive Web & PWA
Importing the app
You can import the Forge components only into the apps that are of the Reference Architecture type.
 To import the Vue Accordion component, do the following:
1. [bookmark: OLE_LINK36][bookmark: OLE_LINK42]Open your app project in Volt MX Iris.
1. In the Project Explorer, click the Templates Tab
 [image: Graphical user interface, text, application

Description automatically generated]
1. Right-click Components, and then select Import Component. The Import Component dialog box appears.
[image: Graphical user interface, text, application, Teams

Description automatically generated]
1. Click Browse to navigate to the location of the component, select the component, and then click Import. The component and its associated widgets and modules are added to your project.

[bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK64]Once you have imported a component to your project, you can easily add the component to a form. For more information, refer Add a Component to a Form
[image:]

Building and previewing the app
After performing all the above steps, you can build your app and run it on your device. For more information, you can refer to the Building and Viewing an Application section of the Volt MX User Guide.
 	You can then run your app to see the Vue Accordion work in real time.
3.References
A. Dynamic Usage
You can also add Vue Accordion component dynamically. To do so,
In the Project Explorer, on the Projects tab, click Controllers section to access the respective Form Controller. Create a method and implement the code snippet similar to the sample code mentioned below.
/*Creating Vue Accordion component instance*/
 createComponent: function()
 {
 /* Creating the component's object */
 var vueAccordion = new com.voltmxmp.vueaccordion(
 {
 "clipBounds": true,
 "height": "265dp",
 "id": "vueAccordion",
 "isVisible": true,
 "left": "0dp",
 "top": "0dp",
 "width": "100%",
 "zIndex": 1
 }, {}, {});

 /* Setting the component's properties */
 vueAccordion.masterData =
 {
 "data":
 [
 {
 "id1": "1",
 "id2": "First Title",
 "id3": "This is the text for the first item.",
 "id4": "https://unsplash.it/650/350/?image=101"
 },
 {
 "id1": "2",
 "id2": "Second Title",
 "id3": "This is the text for the second item.",
 "id4": "https://unsplash.it/650/350/?image=1"
 },
 {
 "id1": "3",
 "id2": "Third Title",
 "id3": "This is the text for the third item.",
 "id4": "https://unsplash.it/650/350/?image=20"
 },
 {
 "id1": "4",
 "id2": "Fourth Title",
 "id3": "This is the text for the fourth item.",
 "id4": "https://unsplash.it/650/350/?image=40"
 },
 {
 "id1": "5",
 "id2": "Fifth Title",
 "id3": "This is the text for the fifth item",
 "id4": "https://unsplash.it/650/350/?image=33"
 },
 {
 "id1": "6",
 "id2": "Sixth Title",
 "id3": "This is the text for the sixth item.",
 "id4": "https://unsplash.it/650/350/?image=44"
 }
],

 "schema":
 [
 {
 "columnHeaderText":"id",
 "columnHeaderType":"text",
 "columnID":"id1",
 "columnType":"text"
 },
 {
 "columnHeaderText":"title",
 "columnHeaderType":"text",
 "columnID":"id2",
 "columnType":"text"
 },
 {
 "columnHeaderText":"text",
 "columnHeaderType":"text",
 "columnID":"id3",
 "columnType":"text"
 },
 {
 "columnHeaderText":"image",
 "columnHeaderType":"text",
 "columnID":"id4",
 "columnType":"text"
 }
]
 };

 vueAccordion.onClickItem = function(selectedItem){}.bind(this);
 vueAccordion.onErrorCallback = function(errObj){}.bind(this);
 /* Adding the component to the form */
 this.view.add(vueAccordion);
 }
In the code snippet, you can edit the properties of the component as per your requirement. For more information, see Setting Properties. And save the file.
 B. Properties
You can use a component’s Properties to customize and configure the elements such as UI widgets, service parameters, and other elements.
You can set the properties from the Properties panel on the right side of Iris. You can also configure these properties by using a JavaScript code.
1. General Properties
i. Master Data
	Description:
	Specifies the data that you want to display on the accordion.

	Syntax:
	masterData

	Type:
	1. Data Grid
1. JSON

	Read/Write:
	Write

	Example:
	this.view.componentID.masterData =
{
“data”:
[
{
	“id1”: “1”,
	“id2”: “First Title”,
	“id3”: “This is the text for the first item.”,
	“id4”: “https://unsplash.it/650/350/?image=101”
},
{
	“id1”: “2”,
	“id2”: “Second Title”,
	“id3”: “This is the text for the second item.”,
	“id4”: “https://unsplash.it/650/350/?image=1”
},
{
	“id1”: “3”,
	“id2”: “Third Title”,
	“id3”: “This is the text for the third item.”,
	“id4”: “https://unsplash.it/650/350/?image=20”
},
{
	“id1”: “4”,
	“id2”: “Fourth Title”,
	“id3”: “This is the text for the fourth item.”,
	“id4”: “https://unsplash.it/650/350/?image=40”
},
{
	“id1”: “5”,
	“id2”: “Fifth Title”,
	“id3”: “This is the text for the fifth item”,
	“id4”: “https://unsplash.it/650/350/?image=33”
},
{
	“id1”: “6”,
	“id2”: “Sixth Title”,
	“id3”: “This is the text for the sixth item.”,
	“id4”: “https://unsplash.it/650/350/?image=44”
}
],

“schema”:
[
{
	“columnHeaderText”:”id”,
	“columnHeaderType”:”text”,
	“columnID”:”id1”,
	“columnType”:”text”
},
{
	“columnHeaderText”:”title”,
	“columnHeaderType”:”text”,
	“columnID”:”id2”,
	“columnType”:”text”
},
{
	“columnHeaderText”:”text”,
	“columnHeaderType”:”text”,
	“columnID”:”id3”,
	“columnType”:”text”
},
{
	“columnHeaderText”:”image”,
	“columnHeaderType”:”text”,
	“columnID”:”id4”,
	“columnType”:”text”
}
]
};

C. Events
The component invokes events when its corresponding action is performed. You can configure logic that you want the component to perform when an event occurs.
You can configure the events on the Actions tab in the Properties panel. You can also configure the events by using a JavaScript code.
onClickItem
	Description:
	Invoked when the user clicks an item from the accordion.

	Syntax:
	onClickItem

	Parameters:
	selectedItem[JSON] :
Contains the following keys
1. id: The ID of the selected item
1. title: The title that is displayed on the selected item
1. text: The text that is displayed on the selected item
1. image: The URL of the background image of the selected item

	Example:
	this.view.componentID.onClickItem = function(selectedItem)
{
	alert(“Item Clicked. Item Data: “+JSON.stringify(selectedItem));
}.bind(this);

onErrorCallback
	Description:
	Invoked when an error occurs in the component.

	Syntax:
	onErrorCallback

	Parameters:
	errObj[JSON] :
Contains information about the error, such as the error code and the error message.

	Example:
	this.view.componentID.onErrorCallback = function(errObj)
{
	alert(“Error: “+JSON.stringify(errObj));
}.bind(this);

	

	

D. API’s
The following APIs pertain to the Accordion – vue.js component:
setData
	Description:
	Displays the specified data on the accordion.

	Syntax:
	setData(data)

	Parameters:
	data [Array of JSON] :
An array of objects that contain the ID, title, text, and image URL for every item on the accordion.

	Return Value:
	None

	Example:
	var data =
[
{
	title: “First Title”,
	text: “This is the text for the first item.”,
	id: 1,
	image: “https://unsplash.it/650/350/?image=101”
},
{
	title: “Second Title”,
	text: “This is the text for the second item.”,
	id: 2,
	image: “https://unsplash.it/650/350/?image=534”
},
{
	title: “Third Title”,
	text: “This is the text for the third item.”,
	id: 3,
	image: “https://unsplash.it/650/350/?image=9”
},
{
	title: “Fourth Title”,
	text: “This is the text for the fourth item.”,
	id: 4,
	image: “https://unsplash.it/650/350/?image=12”
},
{
	title: “Fifth Item”,
	text: “This is the text for the fifth item”,
	id: 5,
	image: “https://unsplash.it/650/350/?image=15”
}
];

this.view.componentID.setData(data);

	
	

1. REVISION HISTORY
 	 App version: 1.0.2
1. Known Issues
No Known Issues
1. Limitations
No Limitations

0
image1.png

image2.png

image3.png

image4.png

